Bidirectional Electron Transfer Capability in Phthalocyanine–Sc$_3$N@I$_h$–C$_{80}$ Complexes

Olga Trukhina,*†‡ Marc Rudolf,*§ Giovanni Bottari,*†‡ Takeshi Akasaka,*,†‖ Luis Echegoyen,*‡† and Dirk M. Guldi*§†

†Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
‡IMDEA Nanociencia, Faraday 9, 28049 Madrid, Spain
§Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
‖Department of Chemistry, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan
‡Department of Chemistry, University of Texas at El Paso, El Paso, Texas 79968, United States

ABSTRACT: To activate oxidative and/or reductive electron transfer reactions, N-pyridyl-substituted Sc$_3$N@I$_h$–C$_{80}$ (4) and C$_{80}$ (3) fulleropyrrolidines have been prepared and axially coordinated to electron-rich (1) or electron-deficient (2) Zn(II)phthalocyanines (Zn(II)Pcs) through zinc-pyridyl, metal–ligand coordination affording a full-fledged family of electron donor–acceptor ensembles. An arsenal of photo-physical assays as they were carried out with, for example, 1/4 and 2/4 show unambiguously that a Zn(II)Pc-to-Sc$_3$N@I$_h$–C$_{80}$ photoinduced electron transfer takes place in the former ensemble, whereas a Sc$_3$N@I$_h$–C$_{80}$-to-Zn(II)Pc electron transfer occurs in the latter ensemble. To the best of our knowledge, this is the first time that a fullerene-based molecular building block shows an electron transfer dichotomy, namely acting both as electron-acceptor or electron-donor, and its outcome is simply governed by the electronic nature of its counterpart. In light of the latter, the present work, which involves the use of Sc$_3$N@I$_h$–C$_{80}$, one of the most abundant and easy-to-purify endohedral metallofullerenes, is, on one hand, a paradigmatic change and, on the other hand, an important milestone en-route toward the construction of easy-to-prepare molecular materials featuring switchable electron transfer reactivity.

INTRODUCTION

During the last two decades, a significant effort has been made by the scientific community toward the preparation and study of electron donor–acceptor (D–A) ensembles exhibiting photoinduced charge separation, a fundamental process common to both natural photosynthesis and solar energy conversion, which stands out as one of the hot topics in contemporary science.1 Among the molecular species used for this purpose, fullerenes (empty and endohedral) have been rapidly identified as some of the most promising candidates by virtue of their unique physicochemical properties. More precisely, empty fullerenes possess remarkable electron-acceptor or properties,2 which coupled with their small reorganization energy and their ability to promote ultrafast charge separation and slow charge recombination, have promoted the incorporation of these spherical nanostructures in systems where photoinduced electron transfer (PET) processes and solar energy conversion are sought.3 However, a limitation of this family of fullerenes is the impossibility to significantly modify their electron-accepting or -donating features. Despite the large number of fullerene-based D–A conjugates that have been prepared, prompted by important advances in the chemistry of fullerenes functionalization,4 exohedral derivatization of these empty carbon cages with a wide variety of photo- and/or redox-active moieties does not usually lead to an inversion in the direction of the charge transfer process. In these systems, the fullerene generally acts as the electron-accepting unit with only a few exceptions for which the carbon nanostructure behaves as the electron-donating moiety.5

On the contrary, endohedral metallofullerenes (EMFs), carbon cages that encapsulate atoms, ions, or clusters, possess a redox chemistry that, differently from their empty analogues, significantly varies as a function of the encapsulated species.6 Moreover, EMFs exhibit higher absorption coefficients in the visible region of the electromagnetic spectrum and reduced HOMO–LUMO gaps compared to empty fullerenes, which make EMFs excellent candidates for optoelectronic applications. The initial reports documented the use of EMFs as electron-accepting moieties in covalently linked D–A systems,7 but more recently, a few examples of EMF-based, D–A conjugates have been reported in which the EMF acts as an electron-donating unit.8

Received: June 29, 2015
Published: September 24, 2015
DOI: 10.1021/jacs.5b06454
J. Am. Chem. Soc. 2015, 137, 12914–12922
Results and Discussion

To achieve this goal, a \(\text{ScN}@I_4-C_{80} \) derivative (4) was prepared and connected to an electron-donating (1) or an electron-accepting (2) Zn(II) phthalocyanine (Pc) by metal-ligand, axial coordination of the fulleropyrrolidine to the zinc metal center in the Pc macrocycle (Figure 1). Similarly, a pyridyl-substituted \(C_{60} \) derivative (3) was synthesized and axially coordinated to Zn(II)Pcs (a) or (b) to Zn(II)Pc complexes 1/3 and 2/3, and 1/4 and 2/4.

The choice of Zn(II)Pcs as supramolecular “counterparts” of 3 and 4 was prompted by several reasons. Pcs are aromatic macrocycles which possess excellent light-harvesting capabilities, good thermal stability, and rich redox chemistry. Moreover, and importantly, the optical and electrical properties of these macrocycles can be easily modulated by the careful choice of the metal center and/or the peripheral substituents making them perfect building blocks for light harvesting, photovoltaic, and molecular photonic applications.

resolved photophysical studies conducted with supramolecular assemblies 1/3, 2/3, 1/4, and 2/4 revealed significant differences in the deactivation of the photogenerated Zn(II)Pc excited state. Whereas in the case of the complexes between Zn(II)Pc and fullerene derivatives 3 or 4, PET from the Zn(II)Pc macrocycle to the fullerene moiety dominates the deactivation dynamics, a \(\text{ScN}@I_4-C_{80} \)-to-Zn(II)Pc charge transfer is observed for complex 2/4, while no evidence of electron transfer was observed for complex 2/3, in perfect agreement with electrochemical results obtained for derivatives 1–4. Remarkably, in the case of supramolecular complexes 1/4 and 2/4, a switchable PET process is observed involving, for the first time, a fullerene-based molecule (4), which acts both as electron-acceptor or electron-donor as a function of the electronic nature of its supramolecular counterpart. Additionally, and importantly, this work involves, for the first time, the use of \(\text{ScN}@I_4-C_{80} \) as an electron-accepting/donating redox moiety, an EMF which can be prepared and separated in bulk quantities by non-HPLC methods with a yield higher than \(C_{80} \), the third most abundant empty fullerene.

Octakis-(pentylsulfonyl) Zn(II)Pc 2 was prepared in 54% yield by the cyclotetramerization reaction of 1,2-dicyano-4,5-diphenyl-1,3-cyclohexadiene in a DMF/dichlorobenzene (DCB) mixture at 145 °C in the presence of zinc(II) acetate and characterized by mass spectrometry, electrochemistry, and UV–vis and NMR spectroscopies (Figures S5, S9, S15, S16). Tetra-tert-buty1 Zn(II)Pc 1 was purchased from Aldrich. On the other hand, pyridyl-substituted fulleropyrrolidines 3 and 4 were prepared by the 1,3-dipolar cycloaddition of an azomethyne ylide to \(C_{80} \) derivative, generated in situ by the reaction of \(N \)-pyridylglycine and paraformaldehyde, to \(C_{60} \) and \(\text{ScN}@I_4-C_{80} \), respectively, in refluxing o-DCB under an argon atmosphere. Whereas the 1,3-cycloaddition of the as-formed azomethyne ylide to \(C_{60} \) occurs exclusively at a [6,6]-carbon bond leading to the formation of a single species, in the case of \(\text{ScN}@I_4-C_{80} \) two possible regioisomers resulting from the azomethyne ylide addition at a [5,6]- or [6,6]-carbon bond of the EMF sphere are theoretically possible. In this connection, monitoring the progress of the reaction leading to \(\text{ScN}@I_4-C_{80} \) derivative 4, the concomitant formation of both a [5,6]- and a [6,6]-regioisomers was observed at the early stages of the Prato reaction (Figures S1, S8). An aliquot of this reaction taken after 30 min shows an 83/17 ratio between the kinetic [6,6]-adduct and the thermodynamic [5,6]-adduct 4 (Figures S1, S2). Interestingly, the [6,6]-adduct is fully converted to the more stable [5,6]-adduct 4 after 12 h in refluxing o-DCB in an isomerization process involving the pirouetting of the pyrrolidine addend (Figures S1, S2). To the best of our knowledge, this is the second time a [6,6]-adduct generated by 1,3-dipolar cycloaddition of an azomethyne ylide to \(\text{ScN}@I_4-C_{80} \) has been observed and characterized. Column chromatography of the reaction crude on silica gel was carried out after 12 h, resulting in the isolation of the [5,6]-isomer 4 in a 12% yield as the only monoadduct, and negligible amounts of bisadducts.

\(\text{ScN}@I_4-C_{80} \) derivative 4 was characterized by NMR and UV–vis spectroscopies, and mass spectrometry (Figures S3, S6, S14, S16). The MALDI-TOF spectrum of derivative 4 shows a major peak at 1228.9 m/z corresponding to the molecular ion, together with some small peaks at lower intensities due to fragmentation (Figure S3). The \(^1H \) NMR spectrum of 4 in a CsF/CD3Cl3 mixture shows two sets of doublets for both the pyridyl protons (8.44 and 6.91 ppm) and the two diastereotopic geminal protons of the pyrrolidine ring.
(4.98 and 3.82 ppm) (Figure S6). As expected for a [5,6]-addition to Sc₃N@Iₘ−C₆₀, these latter protons show (i) cross-peak correlation to the same pyrrolidine methylene carbon atom at 62.6 ppm as inferred by ¹H-¹⁵C HSQC NMR (Figure S11) (ii) and (ii) a large chemical shift difference between them which arises from the different magnetic environments experienced by the two methylene protons (Figure S12) and the shielding of the α-methylene protons caused by the trans-lone pairs of the pyrrolidine nitrogen atom, according to Dorn et al. Moreover, both geminal protons’ resonance is downfield shifted by almost 1 ppm with respect to the chemical shift of the same geminal pyrrolidine protons in N-methyl-3,4-[5,6]-(680 nm for Zn(II)Pc and the absorption of the added fullerenes were subtracted from the corresponding spectra.

Table 1. Redox Potentials of Derivatives 1–4 and Pristine Sc₃N@Iₘ−C₆₀ Obtained by DPVs, E_p vs Fc/Fc’, V

<table>
<thead>
<tr>
<th>compound</th>
<th>E_p¹ (red)</th>
<th>E_p² (red)</th>
<th>E_p¹ (ox)</th>
<th>E_p² (ox)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-1.81</td>
<td>-1.50</td>
</tr>
<tr>
<td>2</td>
<td>-1.24</td>
<td>-1.06</td>
<td>-0.70</td>
<td>-0.65</td>
</tr>
<tr>
<td>3</td>
<td>-2.46</td>
<td>-2.02</td>
<td>-1.51</td>
<td>-1.12</td>
</tr>
<tr>
<td>4</td>
<td>-2.58</td>
<td>-2.15</td>
<td>-1.43</td>
<td>-1.04</td>
</tr>
<tr>
<td>pristine Sc₃N@Iₘ−C₆₀</td>
<td>-2.37</td>
<td>-1.62</td>
<td>-1.26</td>
<td>+0.59</td>
</tr>
</tbody>
</table>

*aOnly the first four reductions of octasulfonyl Zn(II)Pc 2 are reported.

The possible interactions in the ground state between Zn(II)Pcs 1 and 2, on one hand, and 3 and 4, on the other hand, were investigated by visible/near-infrared absorption spectroscopy in chlorobenzene and in o-DCB. Absorption assays with solutions of Zn(II)Pcs 1 and 2 titrated with variable amounts of 3 and 4 were performed maintaining the total Zn(II)Pc concentration constant at 1.0 × 10⁻⁵ M. Absorption changes of the Soret- and Q-band were monitored at 350 and 680 nm for Zn(II)Pc 1 and at 360 and 690 nm for Zn(II)Pc 2, respectively. However, only in the case of Zn(II)Pc 2 changes in its absorption features were observed upon addition of fullerene derivatives 3 and 4 (Figure 2). Well-defined isosbestic points at 307, 382, 522, and 706 nm for 2/3 and at 390 nm for 2/4 indicate the formation of Zn(II)Pc/fullerene supramolecular “partner” of 4 from Zn(II)Pc 1 to 2 is expected to reverse the direction of the photoinduced charge transfer from the EMF to the electron-accepting, octasulfonyl Zn(II)Pc.

Figure 2. (a) Steady-state absorption spectra of electron-deficient Zn(II)Pc 2 upon addition of C₆₀ derivative 3, from 0 (black spectrum) up to 1.1 × 10⁻⁵ M (yellow spectrum) in chlorobenzene at room temperature. (b) Steady-state absorption spectra of electron-deficient Zn(II)Pc 2 upon addition of Sc₃N@Iₘ−C₆₀ derivative 4, from 0 (black spectrum) up to 1.1 × 10⁻⁵ M (yellow spectrum), in chlorobenzene at room temperature. Both in a and b, the total concentration of the Zn(II)Pc during the titration was maintained constant at 1.0 × 10⁻⁵ M and the absorption of the added fullerenes were subtracted from the corresponding spectra.
molecular complexes and appreciable ground-state coupling. A 1:1 stoichiometry for both supramolecular complexes 2/3 and 2/4 was established by Job plot analysis (Figure S18 and Figure 3, respectively).

Figure 3. (a) UV–vis absorption spectra obtained at different 2/4 ratios from 0 (light blue spectrum) to 1 (black spectrum) at 0.1 increment in chlorobenzene (toal concentration = 1.0 × 10−6 M). (b) Job plot analysis for the complexation of electron-deficient Zn(II)Pc 2 with Sc3N@I3−C60 derivative 4 in chlorobenzene monitored at 694 nm.

Insights into the excited-state interactions within the Zn(II)Pc–fullerene supramolecular ensembles were obtained from steady-state fluorescence measurements in chlorobenzene and o-DCB. The Zn(II)Pc-centered fluorescence of derivatives 1 and 2 with maxima at 685 and 694 nm, respectively, were monitored upon photoexcitation at either 610 or 630 nm. For both Zn(II)Pcs, an exponential decrease of their fluorescence is observed upon addition of derivative 4 until the end point of the titration is reached (i.e., after the addition of 11 and 6 equiv of 4 to Zn(II)Pcs 1 and 2, respectively), a change associated with the quantitative formation of the Zn(II)Pc/fullerene hybrids (Figure 4). A similar trend was observed upon replacing 4 for C60 derivative 3 (Figures S19, S20). The Zn(II)Pc fluorescence quantum yield in the supramolecular complexes 1/3, 2/3, 1/4, and 2/4 is 0.02, 0.08, 0.11, and 0.06, respectively. These values are significantly lower than the 0.30 and 0.23 obtained for uncomplexed Zn(II)Pcs 1 and 2, respectively. Taking into account a 1:1 complexation stoichiometry between the Zn(II)Pc and the pyridine-substituted fulleroypyrrrolidine (vide supra), the Zn(II)Pc/fullerene binding constants for the four supramolecular complexes were calculated using the fluorescence titration data according to eq 1.

\[
\frac{I}{I_0} = 1 - \frac{1}{2c_0}\left[c_F + c_0 + \frac{1}{K_{ass}}\right] - \left(\frac{c_F + c_0 + \frac{1}{K_{ass}}}{2c_0}\right)^2 - 4c_0c_F
\]

(1)

where \(K_{ass}\) is the binding constant, \(c_0\) is the concentration of Zn(II)Pc 1 or 2, and \(c_F\) is the concentration of the fullerene derivatives 3 or 4. Overall, the binding constants, log \(K_{ass}\) were 6.1 ± 0.1 (1/3), 6.2 ± 0.2 (2/3), 5.5 ± 0.1 (1/4), and 5.9 ± 0.1 (2/4) in chlorobenzene (Figures 4, S18, S20).

Prior to transient absorption measurements, spectrophotometric experiments were deemed necessary to assist in the interpretation of the excited-state spectral features of the four supramolecular complexes (vide infra). To this end, the formation of the one-electron reduced form of electron-deficient Zn(II)Pc 2 and the one-electron oxidized forms of electron-rich Zn(II)Pc 1 and Sc3N@I3−C60 derivative 4 were monitored upon spectrophotometric reduction and oxida-
tion, respectively, in deaerated o-DCB. The differential absorption spectrum of Zn(II)Pc 2 upon spectroelectrochemical reduction displays sets of maxima at 476, 605, 647, 769, 960, and 1100 nm, as well as minima at 426, 628, 665, and 695 nm (Figure 5a). On the other hand, spectroelectrochemistry of absorption spectra obtained from steady-state experiments, such as titration assays and spectroelectrochemistry, are the simple subtraction of the final spectrum from the initial spectrum. A qualitative comparison between the spectroelectrochemical data and the transient absorption spectra is based on identifying the transients of the radical ion pairs (vide infra).

Compounds 1–4 were individually investigated. Upon excitation of C60 derivative 3 with a 387 nm laser pulse (Figure S26), differential absorption spectra arise, which are attributed to the population of the singlet excited state of C60 with characteristic absorption maxima in the visible at 520 nm and in the near-infrared between 800 and 1200 nm. The C60 singlet excited state features undergo quantitative intersystem crossing with a lifetime of 1.5 ± 0.1 ns to afford its triplet manifold with a characteristic maximum at 700 nm and a lifetime up to 20 µs in oxygen-free chlorobenzene. Photoexcitation of a chlorobenzene solution of Sc3N@I3−—C60 derivative 4 with a 387 nm laser pulse (Figure S27) leads to differential absorption changes that include strong transient maxima at 480 and 1025 nm. The singlet excited state features of 4 decay fast with a lifetime of 25 ± 5 ps. The presence of the C60-encapsulated Sc3N cluster in 4 is likely to be responsible for the fast singlet excited state decay to yield the triplet manifold. Turning to Zn(II)Pcs, 1 (Figures S23 and S24) reveals differential absorption changes that include transient maxima at 483, 598, 638, 739, and 825 nm, as well as transient minima at 615 and 683 nm upon excitation at 676 nm. These transients correlate with the singlet excited state of Zn(II)Pc 1 and have an intrinsic lifetime of 2.8 ± 0.1 ns in chlorobenzene. In 1, the singlet–singlet transitions undergo intersystem crossing to the corresponding triplet excited state with a transient maximum at 500 nm and transient minima at 615, 652, and 682 nm. For the chlorobenzene solution of sulfonyl-substituted Zn(II)Pc 2, it was necessary to add small amounts of pyridine to circumvent Zn(II)Pc aggregation, which otherwise dominates the outcome of the femtosecond transient absorption experiments even at Zn(II)Pc concentrations as low as 1 × 10−5 M. The differential absorption spectra of 2 (Figure S25) reveal transient maxima at 521, 647, and 850 nm as well as transient minima at 624 and 695 nm upon 676 nm laser irradiation. Similar to Zn(II)Pc 1, we ascribe these differential absorption changes to the formation of the singlet excited state of 2, which undergoes intersystem crossing with a time constant of 2.8 ± 0.1 ns to form the corresponding triplet excited state. The triplet excited state displays characteristic transient absorption maxima at 440 and 810 nm and minima at 624, 664, and 694 nm.

Next, transient absorption analysis of supramolecular complexes 1/3, 2/3, 1/4, and 2/4 was carried out. Differential absorption spectra of hybrid 1/3 include transient maxima at 495, 600, 640, and 800 nm and minima at 616 and 680 nm which were observed directly after photoexcitation with 676 nm laser pulses (Figures S28 and S29). These transient features relate to the singlet excited state features of Zn(II)Pc 1 (vide supra). In contrast to 1, in supramolecular ensemble 1/3 these features decay within 29 ± 1 ps and give rise to new transient maxima at 540, 720, 850, and 1024 nm as well as to transient minima at 617 and 680 nm. These features, especially those in the near-infrared, are reliable fingerprints of the one-electron oxidized Zn(II)Pc 1 and the one-electron reduced fullerene 3 species,23,24 that is, 1+/*3−*. From a multil wavelength kinetic analysis, a lifetime of 9.0 ± 0.5 ns in chlorobenzene was deduced for the 1+/3−* radical ion pair state. Notably, the product of charge recombination is the triplet excited state of

![Figure 5. Differential absorption spectra (visible and near-infrared) obtained upon (a) electrochemical reduction of electron-deficient Zn(II)Pc 2 (applied bias of −0.8 V) and (b) electrochemical oxidation of Sc3N@I3−—C60 derivative 4 (applied bias of +0.8 V) in argon-saturated o-DCB at room temperature with 0.05 M n-Bu4NPF6 as supporting electrolyte and silver-wire as pseudoreference electrode.](image-url)

DOI: 10.1021/jacs.5b06454
J. Am. Chem. Soc. 2015, 137, 12914–12922
electron-rich Zn(II)Pc 1. Photoexcitation of supramolecular hybrid 2/3 with 676 nm laser pulses leads to the exclusive population of the singlet excited state of electron-deficient Zn(II)Pc 2 with transient maxima at 521, 647, and 850 nm and minima at 624 and 695 nm (Figure S25), in agreement with the transient absorption experiments of 2 (vide supra). These latter transitions then decay to the corresponding triplet excited state features of 2 with maxima at 445, 647, and 810 nm and minima at 624, 664, and 693 nm, similar to what was observed for uncomplexed Zn(II)Pc 2. In the case of supramolecular complex 2/3 no evidence for any PET event is observed. An electron transfer from the singlet excited state of Zn(II)Pc 2, with an energy of 1.79 eV, to C60 derivative 3 is ruled out on thermodynamic grounds due to the high radical ion pair state energy for 2*+/3−. From electrochemical experiments performed with the individual components 2 and 3, a 2*+/ 3− radical ion pair state energy of 1.89 eV was calculated. Notably, axial coordination of pyridyl derivatives to Zn(II)Pc is detected, whose formation is connected to a minor conclusion of the 8 ns time scale, the triplet excited state of Zn(II)Pc 1 (Figure 8a). At the conclusion of the 8 ns time scale, the triplet excited state of Zn(II)Pc is detected, whose formation is connected to a minor extend to charge recombination and to a major extend to regular intersystem crossing in uncomplexed Zn(II)Pc 1. Notably, the 1*+/4*− radical ion pair state is nearly isoelectronic with the singlet excited state of 1, so basically without any thermodynamic driving force, as such a charge transfer, with presumably a reasonable activation barrier, might be feasible by thermal activation. This process is, however, placed deep in the Marcus normal region and, thus, not competitive with the ultrafast charge separation that gives the 1*+/4*− radical ion pair state.

Finally, supramolecular ensemble 2/4 was probed and the differential absorption spectra were recorded (Figure 7). Upon 676 nm laser excitation, transient absorption maxima at 522, 647, and 850 nm and minima at 624 and 695 nm corroborate the population of the singlet excited state of Zn(II)Pc 2. This singlet excited state decays rapidly with a lifetime of 6.6 ± 0.1 ps, followed by the formation of new maxima at 465, 603, 646, 760, and 1060 nm and minima at 625 and 695 nm. From a comparison of these transient spectra with the spectrum obtained from the spectroelectrochemical reduction of 2 (Figure 5a), it is possible to assign the visible bands in the former spectra to the one-electron reduced form of Zn(II)Pc 2, namely 2*−.26 On the other hand, the features of the Sc3N@Ia− C80 derivative 4 radical cation species, namely 4*+, could also be identified by comparison with the spectrum obtained upon spectroelectrochemical oxidation of 4 (Figure 5b). In accordance with these results, and differently from ensemble 1/4, a PET process from the electron-donating Sc3N@Ia− C80 4 to the photoexcited electron-accepting Zn(II)Pc 2 must be
occuring to yield the 2''/4'' radical ion pair state at 0.94 eV instead of the energetically unfavorable uphill 2''/4'' species at 1.81 eV. Notably, the superimposed features of 2'' and 4'' are in sound agreement with those recorded for the 2''/4'' radical ion pair (Figure 7c). The photogenerated 2''/4'' charge separated state, which has a lifetime of 505 ± 10 ps in chlorobenzene, then recombines to give rise to the ground state of Zn(II)Pc 2 (Figure 8b).

From the time-resolved absorption assays, it is possible to conclude that Zn(II)Pc-to-fullerene and fullerene-to-Zn(II)Pc electron transfer dictates the excited state deactivation in supramolecular complexes 1/3 and 1/4 (Pc-to-fullerene), and 2/4 (fullerene-to-Pc), while in 2/3, no evidence for an electron transfer was observed. Moreover, in Zn(II)Pc/Sc3N@Ih−C80 hybrids 1/4 and 2/4, charge separation is accelerated by an order of magnitude relative to the C60 hybrid 1/3, 1.5 × 1011 vs 3.4 × 1010 s−1. Nevertheless, the Zn(II)Pc/C60 hybrid 1/3 outperforms both Zn(II)Pc/Sc3N@Ih−C80 hybrids 1/4 and 2/4 in terms of charge separated state lifetime by 1 order of magnitude as inferred by analyses of the transient absorption measurements which afforded charge recombination rate constants of 1.1 × 108, 5.6 × 109, and 2.0 × 109 s−1 for complexes 1/3, 1/4, and 2/4, respectively.

CONCLUSION

We have successfully prepared four electron D−A ensembles built on metal−ligand coordination between C60 or Sc3N@Ih−C80 featuring a pyridyl moiety, on one hand, and electron-donating or electron-accepting Zn(II)Pcs, on the other hand. Interestingly, full-fledged photophysical assays with those two ensembles that contain Sc3N@Ih−C80 4 axially coordinate either to the electron-donating Zn(II)Pc 1 or to the electron-accepting Zn(II)Pc 2 revealed a switchable electron transfer reactivity. Spectroscopic and kinetic evidence for a Zn(II)Pc-to-Sc3N@Ih−C80 as well as Sc3N@Ih−C60-to-Zn(II)Pc electron transfer, upon light excitation, was established as the major deactivation pathways in time-resolved pump probe experiments. This is, to the best of our knowledge, the first time that a fullerene-based molecular building block shows an electron transfer dualism, namely acting both as electron-acceptor or electron-donor. Its outcome is simply governed by the electronic nature of its counterpart. This finding, in combination with the small reorganization energy of fullerenes in electron transfer reactions, is likely to pave the road to the preparation of novel switching devices, solar energy conversion schemes, and logic gates based on Sc3N@Ih−C80 one of the most abundant and easy-to-purify fullerene. Particularly interesting is also the use of self-assembly en-route toward the...
preparation and study of a plethora of easy-to-prepare D−A constructs showing switchable electron transfer features.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.5b06454.

Experimental details including the synthetic procedures leading to compounds 1−4, HPLC profiles, 1D- and 2D-NMR spectra, mass spectra, UV−vis spectra, DPV curves, femtosecond transient absorption spectra, and spectroelectrochemical spectra (PDF)

AUTHOR INFORMATION

Corresponding Authors

*dirk.guldi@fau.de
*tomas.torres@uam.es
*akasaka@tara.tsukuba.ac.jp
*echegoyen@utep.edu

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support from Deutsche Forschungsgemeinschaft, the MICINN, Spain (CTQ-2014-52869-P), the Comunidad de Madrid (S2013/MIT-2841 FOTOCARBON) and the EU ("SOS2" FP7-PeOPLE-2012-ITN, No.: 316975) is acknowledged. L.E. wishes to thank the U.S. National Science Foundation, Grants DMR-1205302 PREM program and CHE-1408865, as well as the Robert A. Welch Foundation for an endowed chair, Grant No. AH-0033, for generous financial support.

REFERENCES

(19) The ratio between the [5,6]- and the [6,6]-ScN@I−C60 adducts was calculated by comparing the areas of their respective HPLC peaks assuming identical absorption coefficients for both fullerene isomers.

(20) Although the isolation of the [6,6]-adduct of ScN@I−C60 derivative 4 was not pursued (it would have implied to stop the reaction at early reaction times (i.e., after 30 min) when the progress of the Prato reaction is still extremely low in order to have the ratio between the [6,6] kinetic product and the [5,6] thermodynamic product at its maximum), its formation was unequivocally determined by H+ (Figure S8), COSY−(Figure S10) and HSQC−(Figure S11) NMR experiments using a 25:75 mixture of the [6,6]-/5,6]-ScN@I−C60 isomers.

(20) The formation of \(\text{Sc}_3\text{N@I}_8\text{−C}_{80} \) bisadducts, rarely observed in \(\text{Sc}_3\text{N@I}_8\text{−C}_{80} \) chemistry due to the poor reactivity of this EMF towards the 1,3-dipolar cycloaddition, was confirmed by a MALDI-TOF peak at 1349.0 \(m/z \) corresponding to the \([\text{C}_{94}\text{H}_{16}\text{N}_5\text{Sc}_3]^− \) molecular ion (Figure S4). Considering the high thermal stability of the \([6,6]\)-monoadduct, this observation agrees with recent results reported by Aroua, S. J. Am. Chem. Soc. 2015, 137, 58–61.

(21) In the case of the \([6,6]\)-adduct, and differently from the \([5,6]\)-adduct, the two methylene protons of the pyrrolidine ring at 4.28 and 3.97 ppm correlate to two magnetically nonequivalent methylene carbon atoms of the pyrrolidine ring at 56.5 and 66.2 ppm, respectively (Figures S11, S12).

(26) Due to the ratio of approximately 56:1 in terms of extinction coefficients between the 760 nm maximum of \(2^+ \) and the 880 nm maximum of \(4^+ \), it was not possible, with our instrumental setup, to observe any meaningful contribution from the radical cation signature of \(\text{Sc}_3\text{N@I}_8\text{−C}_{80} \) in the differential absorption spectra.

(27) In the case of ensemble \(1/4 \), a competition between radical ion pair deactivation to the singlet ground state as the main pathway, on one hand, and to the triplet excited state of \(\text{Zn(II)}\text{Pc} \) as the minor pathway, on the other hand, without thermodynamic driving force could also possibly occur. The \(\text{Zn(II)}\text{Pc} \) triplet excited state features observed in the transient absorption measurements of \(2/4 \) likely result from uncomplexed \(\text{Zn(II)}\text{Pc} \) in solution.