The Current-Voltage Trade-Off in Organic Solar Cells and How to Get Around It

Mark Thompson

Department of Chemistry
University of Southern California
The trade-off between V_{OC} and J_{SC}

J_{SC} is related to the absorption profile, minimum energy is related to the HOMO-LUMO gap.

V_{OC} is related to the energy difference between the hole and the electron, ΔE_{DA}.

HOMO-LUMO gap is smaller: collect a larger fraction of solar spectrum, increase J_{SC}, BUT V_{OC} will suffer.
Device Performance of subPC acceptors

ITO/CuPc (400Å)/Acceptor (250Å)/BCP (100Å)/Al (1000Å)

<table>
<thead>
<tr>
<th>Acceptor</th>
<th>(J_{sc}) (mA/cm(^2))</th>
<th>(V_{oc}) (V)</th>
<th>FF</th>
<th>(\eta_p) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-SubPc</td>
<td>1.8</td>
<td>0.13</td>
<td>0.34</td>
<td>0.08</td>
</tr>
<tr>
<td>NO(_2)-SubPc</td>
<td>2.5</td>
<td>0.22</td>
<td>0.43</td>
<td>0.2</td>
</tr>
<tr>
<td>C(_{60})</td>
<td>3.6</td>
<td>0.45</td>
<td>0.54</td>
<td>0.9</td>
</tr>
<tr>
<td>Cl-SubPc</td>
<td>1.6</td>
<td>0.59</td>
<td>0.55</td>
<td>0.5</td>
</tr>
<tr>
<td>SubPc/C(_{60})</td>
<td>4.0</td>
<td>0.97</td>
<td>0.57</td>
<td>2.1</td>
</tr>
</tbody>
</table>

\(\Delta E_{DA} \) (eV) \(V_{oc} \) (V)

<table>
<thead>
<tr>
<th>D/A</th>
<th>(\Delta E_{DA}) (eV)</th>
<th>(V_{oc}) (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuPc/FSubPc</td>
<td>1.0</td>
<td>0.13</td>
</tr>
<tr>
<td>CuPc/NO(_2)-SubPc</td>
<td>1.3</td>
<td>0.22</td>
</tr>
<tr>
<td>CuPc/C(_{60})</td>
<td>1.5</td>
<td>0.46</td>
</tr>
<tr>
<td>CuPc/ClSubPc</td>
<td>1.7</td>
<td>0.59</td>
</tr>
<tr>
<td>SubPc/C(_{60})</td>
<td>1.9</td>
<td>0.97</td>
</tr>
</tbody>
</table>
Motivation for using Pt(TPBP) in photovoltaics

- High absorption coefficient
- Long exciton lifetime: high L_D

Thin Film Spectra (20 nm)

- $\alpha_{\text{Pt}} = 5.9 \times 10^5$ cm$^{-1}$
- $\alpha_{\text{Pd}} = 6.0 \times 10^5$ cm$^{-1}$
- $\alpha_{\text{CuPc}} = 2.1 \times 10^5$ cm$^{-1}$

- High absorption coefficient
- Long exciton lifetime: high L_D

$L_D = \sqrt{D \tau}$
Short Exciton Diffusion Length Drives Device Design

• Very large L_D for single crystals, but need amorphous films

• Common OPV structure and materials
 – Buffer or blocking layer is commonly used
 – Donor: Phthalocyanines/porphyrins, oligo and polythiophenes, acenes (tetracene and pentacene)
 – Acceptor: perylene derivatives, C_{60} and derivatives
 – Most have relatively short exciton diffusion lengths, and short measured exciton lifetimes

• Most OPV materials have high ISC efficiencies
 – CuPC: 0.55, C_{60}: > 0.9, acenes: > 0.9
 – Triplet excitons may be the active species in OPV

\[L_D = \sqrt{D\tau} \]

<table>
<thead>
<tr>
<th>Cpd.</th>
<th>L_D (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuPC</td>
<td>150</td>
</tr>
<tr>
<td>C_{60}</td>
<td>400</td>
</tr>
<tr>
<td>tetracene</td>
<td>700</td>
</tr>
<tr>
<td>PPV</td>
<td>120</td>
</tr>
<tr>
<td>P3HT</td>
<td>70</td>
</tr>
</tbody>
</table>
Singlet vs. Triplet Exciton

1. \(D + h\nu \rightarrow D^* S_1/T_1 \)
 absorption + ISC

2. \(D^* + D \rightarrow D + D^* \)
 exciton migration

3. \(D^* + A \rightarrow [D^+A^-] \)
 charge transfer

4. \([D^+A^-] \rightarrow D^+ + A^- \)
 charge separation

5. \(D^+ + A^- \rightarrow \text{current} \)
 conduction
Motivation for using Pt(TPBP) in photovoltaics

Exciton energies
\(S_1 = 1.9 \text{ eV} \)
\(T_1 = 1.6 \text{ eV} \)

Driving force for exciton separation:
\(S_1 = 0.5 \text{ eV}, T_1 = 0.2 \text{ eV} \)

Net: \(\text{Por}^* + \text{C}_{60} \rightarrow \text{Por}^+ + \text{C}_{60}^- \)
Pt(TPBP) OPV performance

![Graph showing J(V) relationship for Pt(TPBP) and CuPc](image)

<table>
<thead>
<tr>
<th></th>
<th>Jsc (mA/cm²)</th>
<th>Voc (V)</th>
<th>FF</th>
<th>η (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuPc</td>
<td>5.51</td>
<td>0.482</td>
<td>0.60</td>
<td>1.59</td>
</tr>
<tr>
<td>PtTPBP</td>
<td>4.48</td>
<td>0.685</td>
<td>0.63</td>
<td>1.93</td>
</tr>
</tbody>
</table>

QE%

![Absorbance spectrum for Pt(TPBP) and C₆₀](image)

Wavelength (nm)

- 400
- 500
- 600
- 700

Absorbance (a.u.)

- Abs., PtTPBP
- Abs., C₆₀
Exciton diffusion length limitation

- **PtTPBP** is a good hole conductor
 - FF is not significantly affected by the thickness
- **Optimal thickness** = 150 Å
 - Measured exciton diffusion length = 57 Å
Exiton trapping in PtTPBP films

- Film of PtTPBP emits from an excimer or aggregate
 - OLED = doped film: no excimer present
 - Thin film exciton trapped 0.34 eV below molecular exciton, disordered solid may lead to deeper traps
 - Exciton/aggregate lifetimes are short

Plots

- Crystalline Pt(tBu)$_8$TPBP
- PL $\lambda_{\text{max}} = 754$ nm
 - $\tau = 18$ µsec
 - $\tau(77K) = 68$ µsec
 - $L_D = 30$ nm

M.D. Perez, et. al., Adv. Mat., 2009
Pt(TPBP) OPV performance

<table>
<thead>
<tr>
<th></th>
<th>(J_{sc})</th>
<th>(V_{oc})</th>
<th>FF</th>
<th>(\eta(%))</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuPc</td>
<td>5.51</td>
<td>0.482</td>
<td>0.60</td>
<td>1.59</td>
</tr>
<tr>
<td>PtTPBP</td>
<td>4.48</td>
<td>0.685</td>
<td>0.63</td>
<td>1.93</td>
</tr>
</tbody>
</table>

Kinetic Control of V_{OC}

At V_{OC} the photocurrent is cancelled out by the injected current: steady state

\[D^* + A \xrightarrow{k_{ct}} D^+ + A^- \quad \text{Light} \]

\[D^+ + A^- \xrightarrow{k_{rec}} D + A \quad \text{Dark} \]

\[\Delta E_{DA}^\text{limit} = V_{OC} \]

Diagram:
- Light and dark states represented by red and black circles.
- V_{OC} as the boundary between light and dark.
- Photocurrent graph showing increase in current with voltage.
Pt(TPBP) OPV performance

<table>
<thead>
<tr>
<th></th>
<th>J_{sc}</th>
<th>V_{oc}</th>
<th>$\eta(%)$</th>
<th>ΔE_{DA}</th>
<th>J_S (µA/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuPc</td>
<td>5.51</td>
<td>0.482</td>
<td>1.59</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>PtTPBP</td>
<td>4.48</td>
<td>0.685</td>
<td>1.93</td>
<td>1.4</td>
<td>1.1</td>
</tr>
</tbody>
</table>

$J_S \Rightarrow$ recombination rate

300 mV

J_S (µA/cm²)
Chemical annealing of porphyrin films

Film A + Vapor B → Film AB

py
pyCN
dmap
pyz
triazine
Himi
Meimi
Phimi
UV vis spectra of 150Å ZnTPP film treated with ligands

• Film treated with ligand vapor only
• Reaction complete in mins.
• Film composition: ZnTPP:Ligand = 1:1
 – Based on NMR spectra of dissolved thin films
• Not clear isosbestic behavior
• Peak sharpening - film reorganization

Thin film structure – XRD measurement

ZnTPP film
ZnTPP•pz film
ZnTPP•pyz
Single crystal

ZnTPP•triazine film
ZnTPP•triazine film (1,-1,3)

Single crystal

Grazing Incidence XRD – relative orientation

• Orientation of the molecules is parallel to the substrate!
• Intensity spread for the (1,-1,3) as a function of polar angle χ shows that the crystallites are $+/- \ 8.2^\circ$ to the surface

ZnTPP-pz, 50 nm

Device performance

- High leakage, low V_{OC}
- Crystalline \Rightarrow high conductivity
 - High conductivity = high FF
AFM images of 100Å films on glass substrates

ZnTPP
Section analysis

ZnTPP•pyz
Section analysis

ZnTPP•triazine
Section analysis

Aggregates are formed on chemical annealing

Device performance

- Using NPD to prevent leakage
 - Recovers $\frac{1}{2}$ of the V_{OC}
 - NPD $\lambda_{\text{max}} < 400$ nm
- Structure at the D/A interface affects rate of recombination
Kinetic Control of V_{OC}

At V_{OC} the photocurrent is cancelled out by the injected current: steady state

\[D^* + A \xrightarrow{k_{ct}} D^+ + A^- \quad \text{Light} \]

\[D^+ + A^- \xrightarrow{k_{rec}} D + A \quad \text{Dark} \]

\[\begin{array}{c}
D^* + A \\
\text{Light}
\end{array} \]

\[\begin{array}{c}
D^+ + A^- \\
\text{Dark}
\end{array} \]

\[V_{OC} \]

\[h^+ \]

\[\text{DONOR} \]

\[\text{ACCEPTOR} \]

\[V_{OC} \text{ upper} = \Delta E_{DA} \text{ limit} \]

\[\text{Photocurrent} \]

\[\text{Current, a.u.} \]

\[\begin{array}{c}
-15 \\
-10 \\
0 \\
10 \\
15
\end{array} \]

\[\begin{array}{c}
-0.5 \\
0.0 \\
0.5 \\
1.0 \\
1.5
\end{array} \]

\[\text{Voltage, V} \]
Electron transfer rates for Pentacene/C$_{60}$

- Rates of forward and back electron transfer depend on orientation
- Parallel orientation gives rise to a high recombination rate

Dashed, solid = CT: pent/C$_{60}$ \rightarrow pent$^+$/C$_{60}$

Dotted = Recom.: pent$^+$/C$_{60}$ \rightarrow pent/C$_{60}$

CT state energy correlates with V_{oc}

Plot courtesy of Koen Vandewal
Device performance

- High recombination rate ⇒ high dark current ⇒ low V_{OC}
- Amorphous interface is better than the wrong one
• Using thicker amorphous ZnTPP to recover most of V_{OC}, improve FF/J_{SC}

Device performance

- Using thicker amorphous ZnTPP to recover most of V_{OC}, improve FF/J_{SC}

Achieving the “ideal” morphology

- MoO$_3$, 8 nm
- ITO, 150 nm
- DPSQ, 16 nm
- C$_{60}$, 40 nm
- PTCBI, 8 nm
- Ag, 100 nm

• DPSQ: $\alpha \sim 10^5$ cm$^{-1}$

• Solvent vapor annealing (SVA): film exposed to a saturated solvent vapor (CH$_2$Cl$_2$): improves molecular diffusivity (and formation of nanoXstals)

• Annealing done before and after C$_{60}$ deposition.
Morphological control through Solvent Vapor Annealing

• Device performance not monotonically related to crystallinity.
• DPSQ crystallization in post-C$_{60}$ evident from absorption spectrum, but not XRD.
• Crystallized DPSQ templates C$_{60}$.
• Improved bulk crystallinity $\uparrow L_D$.
• Highly crystalline interfaces $\uparrow k_{PPr}$.
Solvent Vapor Annealing pre- & post-C$_{60}$ deposition

- SVA in DCM pre-C$_{60}$:
 - 0.12 V \downarrow in V_{OC}.
 - $EQE \uparrow$ DPSQ \rightarrow improved exciton transport.
 - $EQE \downarrow$ for C$_{60}$

- SVA post-C$_{60}$:
 - DPSQ $EQE \uparrow$ by 80%, $J_{SC} \uparrow$ by 25%.
 - No loss in V_{OC} \rightarrow interface is the same

<table>
<thead>
<tr>
<th>Process</th>
<th>J_{SC} [mA cm$^{-2}$]</th>
<th>V_{OC} [V]</th>
<th>FF [%]</th>
<th>η_P [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Cast</td>
<td>6.1</td>
<td>0.96</td>
<td>74</td>
<td>4.3</td>
</tr>
<tr>
<td>Pre-C$_{60}$</td>
<td>6.0</td>
<td>0.84</td>
<td>71</td>
<td>3.6</td>
</tr>
<tr>
<td>Post-C$_{60}$</td>
<td>7.7</td>
<td>0.97</td>
<td>72</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Solvent Vapor Annealing pre- & post-\(C_{60}\) deposition

- **SVA in DCM pre-\(C_{60}\):**
 - 0.12 V ↓in \(V_{oc}\).
 - \(EQE\) ↑DPSQ ➞ improved exciton transport.
 - \(EQE\) ↓for \(C_{60}\)

- **SVA post-\(C_{60}\):**
 - DPSQ \(EQE\) ↑by 80%, \(J_{sc}\) ↑by 25%.
 - No loss in \(V_{oc}\) ➞ interface is the same

<table>
<thead>
<tr>
<th>Process</th>
<th>(J_{sc}) [mA cm(^{-2})]</th>
<th>(V_{oc}) [V]</th>
<th>FF [%]</th>
<th>(\eta_p) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Cast</td>
<td>6.1</td>
<td>0.96</td>
<td>74</td>
<td>4.3</td>
</tr>
<tr>
<td>Pre-(C_{60})</td>
<td>6.0</td>
<td>0.84</td>
<td>71</td>
<td>3.6</td>
</tr>
<tr>
<td>Post-(C_{60})</td>
<td>7.7</td>
<td>0.97</td>
<td>72</td>
<td>5.5</td>
</tr>
</tbody>
</table>
V_{OC} summary

- The structure at the D/A interface influences V_{OC}
 - Sterics can increase spacing and thus V_{OC}
 - Ordering can be good or bad
 - Chemical annealing ZnTPP orders to the wrong structure
 - Disordered is better than the wrong order

- Can we increase J_{SC} without altering V_{OC}?
 - Doping as seen yesterday, broaden absorbance below E_g
 - Singlet fission
Singlet fission routes around the Shockley-Queisser limit

- Incomplete absorption and thermolysis to band gap energy limit $\eta < 31\%$
Singlet fission routes around the Shockley-Queisser limit

- Incomplete absorption and thermolysis to band gap energy limit $\eta < 31\%$
- Singlet Fission solution: 45%
- You MUST absorb ALL photons
- Efficient Singlet Fission materials are largely limited to crystalline/polycrystalline materials

Theoretical efficiency > 45%!
Singlet Fission Materials

• Several materials systems have $\Phi_{\text{SF}} = 200\%$ (triplet yield)
• High efficiencies only observed for crystalline materials
• Tetracene
• Pentacene
• Diphenyl-benzofuran
• Carotenoids
Absorption/Emission of Acenes

DPT 1000 Å

Tetracene 1000 Å

Absorbance [Norm]

400 450 500 550 600 650
Wavelength [nm]

450 500 550 600 650 700 750
Wavelength [nm]

Amorphous thin film by X-ray and e·diffraction
Transient Absorption Spectroscopy

\[\Delta \text{Abs} = \text{Abs}_{\text{ON}} - \text{Abs}_{\text{OFF}} \]
Singlet Fission in DPT

\[S_n \leftrightarrow S_1 \]

DPT

CHCl_3 Solution

- 0.75 ps
- 10 ps
- 100 ps
- 400 ps
- 850 ps

S_0

S_1

T_1

Singlet Fission in amorphous DPT films

\[Q_T = 122\% \]

- \(\tau_{\text{fast}} = 1.3 \text{ ps} \)
- \(\tau_{\text{slow}} = 105 \text{ ps} \)

Crystalline Tetracene: \(\tau_{\text{SF}} = 40-80 \text{ ps} \)

DPT Crystal Structure

3.68 Å Pair

4.00 Å Pair

4.00 Å Pair

3.68 Å Pair
NAQMD: Kinetic Monte Carlo Simulations

- Utilize Surface Hopping for State Transitions
- Wavefunctions from TD-DFT
- Fermi’s Golden Rule for Transition Probabilities
- 5000 individual trajectories

Simulations suggest 3.9% of molecules give 91% of fission events!
Simulations suggest 3.9% of molecules give 91% of fission events!
Singlet fission routes around the Shockley-Queisser limit

- Incomplete absorption and thermolysis to band gap energy limit $\eta < 31\%$

- You MUST absorb ALL photons

Theoretical efficiency $> 45\%$

Red Dye to Fill the SF Gap

Materials studied as co-deposited films

Spectra in THF solution

DPT

PtTPBP

PtTPBP phosphorescence

Wavelength (nm)

Absorbance (arb. units)

Emission (arb. units)

DPT

PtTPBP

S

T

DPT S

T

PtTPBP

S

T

DPT Triplet

Red Dye to Fill the SF Gap

Materials studied as co-deposited films

Spectra in THF solution

DPT

PtTPBP

PtTPBP phosphorescence

Wavelength (nm)

Absorbance (arb. units)

Emission (arb. units)
Sensitizing to the red in SF materials

S1,Pt(TPBP)\rightarrowT1,Pt(TPBP): 85% Efficient
S1,DPT\rightarrowT1,DPT: 80% Efficient
Singlet fission: 61%

τ$_{SS}$ = 4.6 ps
τ$_{ISC}$ = 400 fs
τ$_{TT}$ = 35 ps

Singlet Fission 1 + 105 ps
S1 + S0 \rightarrow 2 T1
< 50% SF comes from prompt

Need to eliminate delayed SF to make this structure work.

Combining SF with mid-band absorption

- Problems:
 - We did not shut off $S_{11} \to S_{12}$.
 - Low doping level for PtTPBP
- Spatially separating the SF material from all singlet traps will eliminate transfer (layered rather than mixed structure)
Singlet Fission Conclusions

- Singlet fission can be observed for both crystalline and amorphous materials
 - DPT shows SF in both thin films and NP
- SF takes place at specific dimer sites
 - Prompt and diffusive SF
- What is the preferred dimer structure?? Is efficient “unimolecular” singlet fission possible? Can we create systems with only prompt SF?
Acknowledgements

Kristen Mutolo, M. Dolores Perez, Cong Trinh, Steve Bradfoth, Sean Roberts, Eric M. Anally

Department of Chemistry
University of Southern California

Stephen Forrest, Jeramy Zimmerma

Departments of Physics and Electrical Engineering
University of Michigan

Michael Toney, Christopher Tassone, Materials Science Department and Stanford Synchrotron Radiation Lightsource

Funding:

Global Photonic

CAMP

Center for Advanced Molecular Photovoltaics

King Abdullah University of Science and Technology
Solar Cell Efficiency

Cell Efficiency \(\eta_p \) = \(\frac{P_{\text{max}}}{P_o} \)

\(P_o \)
(1 sun, AM1.5)
Solar Cell Efficiency

\[P_0 \text{ (1 sun, AM1.5)} \]

\[P_{max} = V_m J_m \]

\[\eta_p = \frac{P_{max}}{P_o} = \frac{J_{sc} \times V_{oc} \times FF}{P_o} \]
Solar Cell Efficiency

\[
P_0 \quad (1 \text{ sun, AM1.5})
\]

\[
\text{Accepted Donor}
\]

\[
\text{Current Density (mA/cm}^2\text{)}
\]

\[
\text{Applied Test Voltage (V)}
\]

\[
\text{Power Density (mW/cm}^2\text{)}
\]

\[
P_{max} = J_{sc} V_{oc} FF
\]

\[
\eta_p = \frac{P_{max}}{P_o} = \frac{J_{sc} \times V_{oc} \times FF}{P_o}
\]