Influence of acetylene-linked \(\pi\)-spacers on triphenylamine–fluorene dye sensitized solar cells performance

Alexis Tigreros a, Vivek Dhas b, Alejandro Ortiz a, Braulio Insuasty a,*, Nazario Martín c, Luis Echegoyen b,∗

a Grupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad del Valle, A.A. 25360 Cali, Colombia
b Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968-0519, United States
c Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain

A R T I C L E I N F O

Article history:
Received 21 May 2013
Received in revised form 26 October 2013
Accepted 28 October 2013
Available online 21 November 2013

Keywords:
Ethynilfluorene
Dye sensitized solar cells
Acetylene linkage

A B S T R A C T

Four new organic dyes, 1–4, containing triphenylamine (TPA) donors connected through different acetylene linkages to fluorene bridges and cyanoacrylic acid acceptors were designed and synthesized for photoconversion in dye sensitized solar cells (DSSCs). Their absorption spectra, electrochemical and photovoltaic properties were investigated. Shortening the bridge between the TPA moiety and the anchoring group leads to a dramatic increase in the overall photoconversion efficiency (1 > 3 > 4 > 2).

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The conversion of solar energy directly into electricity is one of the most attractive renewable energy sources that could help replace fossil fuels and control global warming [1]. Since the first report in 1991 by O’Regan and Grätzel, dye sensitized solar cells (DSSCs) have emerged as one of the most promising low-cost alternative for renewable generation of electricity [2].

In DSSCs the sensitizer is the crucial component, which absorbs the light and injects electrons into the conduction band of the semiconductor [3,4]. The optimization of this component has resulted in the development of new compounds to improve the absorption, morphology and stability. Ruthenium [5], triarylamines [6], squarines [7], thiophenes [8,9], porphyrins [10,11] and \(\pi\)-extended tetrathiafulvalenes (exTTFs) [12] have been incorporated and tested with promising results. In the past decades, there has been a growing interest in finding new sensitizers that are easy to prepare, exhibit high efficiency in solar energy conversion and can be prepared from easily available materials in order to avoid the high cost of the most efficient dyes, which contain ruthenium(II) [13].

Fluorene is an electron rich moiety with a high molar extinction coefficient, relatively low cost, is easy to functionalize by simple chemical modifications [14,15] and possesses outstanding electron transfer properties [16], therefore it is potentially useful for photovoltaic applications [17]. Actually, fluorene is present in numerous dyes which exhibit efficiencies ranging from moderate to excellent in DSSCs [18–21].

On the other hand, the rod-like shape of the ethynyl groups, where conjugation occurs through a cylindrical electronic structure [22], along with its synthetic availability via cross-coupling reactions and the absence of photostability problems compared to vinyl connectors [23], make this group a very attractive link in materials science, compared with other \(\pi\)-connecting groups.

Based on these observations, a series of donor–spacer–acceptor molecules 1–4 (Fig. 1) having triphenylamine (TPA) donors, fluorene bridges, and cyanoacrylic acid acceptors were synthesized and studied as sensitizers in DSSCs. Taking advantage of the high synthetic versatility of the ethynyl functional group to connect the donor and spacer moieties via Sonogashira and Glaser coupling reactions, along with the well known acetylide platinum chemistry [24–27], we studied the influence of the \(\pi\)-connection through different acetylene linkages on the photoconversion efficiencies. A simple acetylene group (1) is a better \(\pi\)-connector when compared with the other \(\pi\)-connectors studied, namely 2,7-bisethylfluoro-9,9-dioctylfluorene (2), 1,3-butafluorene (3) and platinum acetylide complex (4), despite the fact that these have much higher optical densities.

2. Results and discussion

2.1. Syntheses

The synthetic routes followed to prepare compounds 1–4 are presented in Schemes 1 and 2. The starting compounds...
7-ethynyl-9,9-dioctyl-9H-fluorene-2-carbaldehyde 6, 7-iodo-9,9-dioctyl-9H-fluorene-2-carbaldehyde 9 and 4-ethynyl-N,N-diphenylaniline 12 were prepared according to reported procedures and the analytical data are presented in the supporting information [28,29]. A Sonogashira cross-coupling reaction was used for the synthesis of intermediates 7 and 10, and aldehyde 13 was synthesized using a Glaser cross-coupling reaction in toluene and triethylamine. Starting from the corresponding aldehyde derivatives 6, 7, 10 or 13, and cyanoacetic acid in the presence of ammonium acetate and acetic acid as solvent, 2-cyano-3-(7-ethynyl-9,9-dioctyl-9H-fluoren-2-yl)acrylic acid 11 and the target compounds 1–3 were prepared through a Knoevenagel condensation in high yields (89–92%). Complex 4 was synthesized using a one-pot methodology via cross-coupling with trans-PtCl₂(P̂Et₂)₂ as the platinum source (62%).

2.2. Optical and electrochemical properties

Fig. 2 shows the UV–vis and emission spectra of dyes 1–4 in THF solution, and the data are collected in Table 1. All dyes displayed broad visible bands around 300–450 nm (ε=1.6–4.3 × 10⁵ M/cm) corresponding to a superposition of the π–π* transitions of the conjugated molecules and the intramolecular charge transfer (ICT) transition from the TPA donor to the cyanoacrylic acid acceptor. There were no notable difference in absorption bands when the linker was changed from simple ethynyl to the platinum acetylide complex, only a 6 nm shift, but the absorption coefficient was clearly affected by the introduction of additional conjugation into the system, with the exception of complex 4, which exhibits a weak absorption coefficient when compared to 3. However, in comparison with conventional ruthenium complexes (for example, 1.39 × 10⁶
M/cm at 541 nm for N3) [24] all the synthesized sensitizers show about ten times higher absorption coefficients, which allow the use of correspondingly thinner nanocrystalline films in the devices. This enhances electrolyte diffusion in the film and reduces the recombination of the light-induced charges during transportation [25]. The threshold absorption wavelengths of the absorption spectra for 1, 2, 3 and 4 are 507, 470, 480 and 496 nm, respectively, indicating that the absorption band for 1 is broader than the rest and results in a wide absorption in the longer wavelength region.

When dyes 1–4 are excited at their \(\lambda_{\text{max}} \) absorptions in an air-equilibrated solution at 298 K, they exhibit luminescence maxima at 456 (2), 466 (4), 526 (3) and 566 (1) nm. This indicates that the excited states of dyes 2–4 need more energy for the excitation than for 1. The emission intensity reveals a more effective quenching process in dye 1, which means that there is better coupling between the donor and acceptor moieties in this dye [30]. This suggests a better light harvesting ability of the solar spectrum for dye 1.

<table>
<thead>
<tr>
<th>Dye</th>
<th>(\lambda_{\text{max}}) (nm)</th>
<th>(E_x) (eV)</th>
<th>(\lambda_{\text{em}}) (nm)</th>
<th>(E_{\text{ox}}) vs. NHE (HOMO)</th>
<th>(E_{\text{ox}}) shifts (V)</th>
<th>(E_{\text{ox}}) (eV) vs. NHE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>393 (16,233)</td>
<td>507 (2.45)</td>
<td>545</td>
<td>1.18</td>
<td>0.27</td>
<td>−1.27</td>
</tr>
<tr>
<td>2</td>
<td>397 (43,408)</td>
<td>470 (2.64)</td>
<td>455</td>
<td>1.13</td>
<td>0.22</td>
<td>−1.51</td>
</tr>
<tr>
<td>3</td>
<td>389 (31,569)</td>
<td>480 (2.58)</td>
<td>527</td>
<td>1.15</td>
<td>0.24</td>
<td>−1.43</td>
</tr>
<tr>
<td>4</td>
<td>398 (18,251)</td>
<td>496 (2.50)</td>
<td>484</td>
<td>0.91</td>
<td>0.0</td>
<td>−1.59</td>
</tr>
</tbody>
</table>

| a | \(\lambda_{\text{max}} \) and molar extinction coefficients (\(\varepsilon \)) were measured in THF (2.2 \(\times \) 10\(^{-5} \) M).
| b | Estimated from the onset of the absorption spectra in THF.
| c | Maximum \(\lambda \) of the fluorescence spectra in THF.
| d | The formal oxidation potentials (vs. NHE) in DCM containing 0.1 M of Bu\(_4\)NPF\(_6\) as the supporting electrolyte with a scan rate of 100 mV/s and internally calibrated with ferrocene.
| e | Potential shift relative to dye 4.
| f | The excited-state oxidation potential was calculated with the expression \(LUMO = HOMO - E_{0-x} \).
In general, all dyes showed negative solvatochromism of the higher wavelength absorption bands when recorded in solvents of different polarity, see Table 2 and Fig. 3. This is probably due to better solvation of the dyes in the polar solvents. This also confirms the charge transfer character for this electronic transition. Acid-base equilibria in solution could also change the donor–acceptor capabilities of the dyes. The existence of such equilibria was confirmed by the addition of trifluoroacetic acid (TFA) and triethylamine (TEA) to the dye solutions in toluene, DCM and THF, Table 2 and Fig. 3. Addition of TFA to the dye solutions resulted in a red-shift of the higher wavelength absorption because it shifts the equilibria to the acidic form. As expected, addition of TEA to the dye solutions results in notable blue shifts of the charge transfer transitions.

In order to determine the HOMO–LUMO levels and evaluate the possibility of electron transfer from the excited dye molecules to the conduction band of TiO2 and regeneration by the electrolyte (I–/I3–), the electrochemical properties of 1–4 were measured using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in DCM containing 0.1 M tetrabutylammonium hexafluorophosphate (Fig. 4). In all cases the first oxidation potential, which is attributed to oxidation of the triphenylamine group [31], is quasi-reversible, except for dye 1 which shows a reversible oxidation process. All first oxidation potential values fall between 0.9 and 1.18 V vs. NHE. On the other hand, 2 and 3 exhibit a second non-reversible oxidation potential at 1.53 and 1.71 V, respectively. A third non-reversible oxidation potential is observed at 1.71 V for 2, which could be the result of oxidation of the bis(ethynylfluorene) π-spacer. Under similar conditions, 1 did not show a second oxidation within the measured electrochemical window. Finally, 4 exhibits a broad oxidation wave around 1.33 V, possibly corresponding to the second oxidation of the TPA core and/or oxidation of (≡ – Pt(PTEt3)2 – ≡), as was reported previously for similar compounds [32]. The first oxidation potentials of these dyes shift to lower values upon changing the spacer from acetylene (1, 0.27 V) to the acetylide complex (4, 0.0 V) revealing that the electronic coupling between donor and acceptor groups notably decreases by changing the length, no matter the nature of the π-connection used.

The level of the highest occupied molecular orbital (HOMO) was estimated from the first oxidation wave relative to the NHE by addition of 0.63 V to the potentials measured vs. Fc/Fc+, as listed in Table 1 [33]. The HOMO levels of all dyes were more positive than the reduction potential of the I–/I3– pair (0.4 V vs. NHE) [34], ensuring sufficient driving force for the oxidized dyes to be reduced by the electrolyte. Meanwhile, the excited-state oxidation potential (Eox*) levels of the dyes were deduced from the first oxidation potential and the 0–0 transition energy (E0,0) estimated from the edge of the absorption spectra. The (Eox*) level of all dyes was higher than the TiO2 conductive band (–0.5 V vs. NHE) [34] thus ensuring the feasibility of electron injection, (Fig. 5).

2.3. Molecular orbital calculations

To understand the electronic structure of the dyes, their geometry was optimized by density functional theory (DFT) calculations at the 6–31G(d) or LanL2LZ level using the B3LYP functional, and the vertical excitation energies were computed using time-dependent density functional theory (TDDFT) by using the functional B3LYP or CAM-B3LYP in a vacuum and in THF solvent using the Gaussian 09 B.01 package.

The optimized molecular structures of 1–4 with different π-connectors are shown in Fig. 6. It is worth noting that the connectors do not have a significant influence on the torsion angle between the plane of the donor and that of the acceptor, which means that there is a high degree of π-conjugation that also suggests good electronic coupling between donor and acceptor moieties, which determines the charge transfer amplitude [13,35,36].

Electronic analyses show that the highest occupied molecular orbital (HOMO) is delocalized over the triphenylamine unit and the fluorene groups, except for 4, for which it is located essentially
in the triphenylamine core. The LUMOs are mainly localized in the
cyanoacrylic acid unit through the
fluorenyl group (Table 3, Fig. 6).
Thus the HOMO–LUMO excitation induced by irradiation could
shift electron density from the triphenylamine to the cyano-acrylic
acid group. This will ensure an ef
icient electron injection into the
TiO2 layer after light absorption by the sensitizer. Furthermore,
comparison of the computed HOMO and LUMO energies with the
edge of the CB of TiO2 and the potential of the redox couple (Fig. 7)
shows that they all have more negative HOMO energies than the
I
3/C0/0 redox couple (−4.8 eV vs. vacuum) [37], leading to a fast
regeneration of the oxidized dyes. The more positive LUMO
energies relative to the CB of TiO2 (−4.0 eV vs. vacuum) [38]
ensures an effective injection of excited electrons.

The longer wavelength transition calculated using B3LYP for the
dyes are very red-shifted from the observed values in tetrahydro-
furan and the vertical transitions calculated are predicted to
originate exclusively from the HOMO/LUMO orbitals in all cases
(Table 4). In contrast, the gas phase results obtained using the CAM-
B3LYP functional show better agreement with the experimental
data, with a slight blue shift observed if solvent effects are
neglected. Solvent inclusion in the calculations of the vertical
excitations using the PCM model show red shifts when compared
with the experimentally observed values in tetrahydrofuran. The
results obtained using different theories suggest significant con-
tributions from HOMO/LUMO, HOMO−1/LUMO, HOMO/LUMO+1
transitions for these sensitizers. In particular, dyes 1 and 3 exhibit a
high contribution from the HOMO/LUMO and a small contributions
from the HOMO−1/LUMO transitions, while the maximum absorp-
tions in 2 and 4 are governed mainly by HOMO−1/LUMO and
HOMO/LUMO+1 transitions, with a slight contribution from the
HOMO/LUMO transitions. On this basis, it can be argued that the
longer wavelength absorptions result from charge transfer pro-
cesses for 1 and 3, and from π to π* transitions for 2 and 4 [19,33].

2.4. Dye-sensitized solar cell (DSSC)
To prepare and study the DSSC, the doctor blading method was
employed. After making the fi
lms they were annealed at 450 °C for
30 min. For sensitization, the fi
lms were impregnated with 0.5 mM
of dyes 1–4 in THF for 24 h at room temperature. The samples
were then rinsed with the same solvent to remove the excess of
the dyes on the surface of the photo-electrodes and were air dried
at room temperature. This was followed by addition of the redox
electrolyte and the top contact of Pt coated FTO as discussed
elsewhere. J–V characteristics were measured using a solar simu-
lator at 100 mW/cm2.

2.5. Photovoltaic measurements
Fig. 8 shows the photocurrent density–voltage (J–V) curves for all
the devices under a simulated AM 1.5 solar irradiance at 100 mW/
cm2. Table 4 shows the measured photovoltaic parameters of the
DSSCs of the four dyes. The concentration of all four dyes was the same, i.e. 0.5 mM. Commercially available Degussa (P25) was used for making the photo-anodes. Films were dipped in all the respective dyes for 24 h. The gives the highest efficiency, 3.50%, compared to all other dyes. All these dyes show very similar open circuit voltage \(V_{oc} \) values, but the current density \(J_{sc} \) for 1 is higher, 7.78 mA/cm\(^2\), than for all other dyes as a result of its broader absorption spectrum, which is the main reason for its higher photo-conversion efficiency.

These photovoltaic performances are in agreement with the theoretical, optical and electrochemical studies that predict a better performance for the shortest linkage. The four compounds synthesized show optical and electrochemical properties that are consistent with the distance between donor and acceptor groups. The transition bands show a more pronounced intramolecular charge transfer (ICT) character for shorter linkages [1 \((R_{D-A}=12.47 \, \text{Å}) \gtrsim 3 \ (R_{D-A}=14.95 \, \text{Å}) \gtrsim 4 \ (R_{D-A}=17.69 \, \text{Å}) \gtrsim 2 \ (R_{D-A}=23.36 \, \text{Å})] \), which

Table 3
Computed vertical transition energies, their oscillator strengths and configurations for the dyes 1–4 using different functionals.

<table>
<thead>
<tr>
<th>Functional</th>
<th>Parameter</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3LYP (Vac)</td>
<td>(\lambda_{\text{max}}) (nm)</td>
<td>564</td>
<td>601</td>
<td>579</td>
<td>634</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>0.8322</td>
<td>0.3725</td>
<td>0.6961</td>
<td>0.2017</td>
</tr>
<tr>
<td></td>
<td>Configuration (contribution)</td>
<td>HOMO (-) LUMO (0.71)</td>
<td>HOMO (-) LUMO (0.70)</td>
<td>HOMO (-) LUMO (0.70)</td>
<td>HOMO (-) LUMO (0.71)</td>
</tr>
<tr>
<td>CAM-B3LYP (THF)</td>
<td>(\lambda_{\text{max}}) (nm)</td>
<td>410</td>
<td>400</td>
<td>401</td>
<td>412</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>2.2929</td>
<td>3.7304</td>
<td>2.5918</td>
<td>1.9444</td>
</tr>
<tr>
<td></td>
<td>Configuration (contribution)</td>
<td>HOMO (-) LUMO (0.56)</td>
<td>HOMO (-) LUMO (0.28)</td>
<td>HOMO (-) LUMO (0.42)</td>
<td>HOMO (-) LUMO (0.11)</td>
</tr>
<tr>
<td>CAM-B3LYP (Vac)</td>
<td>(\lambda_{\text{max}}) (nm)</td>
<td>398</td>
<td>392</td>
<td>393</td>
<td>392</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>2.1213</td>
<td>3.6701</td>
<td>2.3503</td>
<td>1.1300</td>
</tr>
<tr>
<td></td>
<td>Configuration (contribution)</td>
<td>HOMO (-) LUMO (0.57)</td>
<td>HOMO (-) LUMO (0.30)</td>
<td>HOMO (-) LUMO (0.44)</td>
<td>HOMO (-) LUMO (0.15)</td>
</tr>
<tr>
<td></td>
<td>HOMO (eV)</td>
<td>-6.09</td>
<td>-6.19</td>
<td>-6.41</td>
<td>-6.32</td>
</tr>
<tr>
<td></td>
<td>LUMO (eV)</td>
<td>-1.56</td>
<td>-1.71</td>
<td>-1.76</td>
<td>-1.90</td>
</tr>
</tbody>
</table>

HOMO LUMO

Fig. 6. Optimized molecular structures of dyes 1–4 in the gas phase, where \(R_{D-A} \) is the distance between donor and acceptor.

Fig. 7. Frontier orbitals of sensitizers 1–4 optimized with DFT at the CAM-B3LYP/6-31G(d) level in vacuum.

Fig. 8. Computed vertical transition energies, their oscillator strengths and configurations for the dyes 1–4 using different functionals.
Table 4
Performance parameters of DSSCs fabricated with dyes 1–4.

<table>
<thead>
<tr>
<th>Dye</th>
<th>V_{oc} (V)</th>
<th>J_{sc} (mA/cm²)</th>
<th>FF (%)</th>
<th>PCE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.680</td>
<td>7.78</td>
<td>66.00</td>
<td>3.50</td>
</tr>
<tr>
<td>2</td>
<td>0.670</td>
<td>4.35</td>
<td>62.00</td>
<td>1.80</td>
</tr>
<tr>
<td>3</td>
<td>0.630</td>
<td>6.05</td>
<td>66.00</td>
<td>2.52</td>
</tr>
<tr>
<td>4</td>
<td>0.650</td>
<td>4.50</td>
<td>70.00</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Fig. 8. Solar cell characteristics for the case of four different dyes 1–4.

follows the same tendency observed for the oxidation peak shifts $[1 (0.27 V) > 3 (0.24) > 2 (0.22) > 4 (0.0)].$ Therefore, the introduction of additional acetylene conjugation linkages in these kinds of pigments decreases the donor–acceptor interactions and subsequently leads to lower photovoltaic performances.

3. Conclusions

We have successfully synthesized a series of new dyes, 1–4, based on triphenylamine, fluorene and cyanoacrylic acid using different acetylene linkages, acetylene (1), 2,7-bisethynylfluorene (2), 1,4-butylnyl (3) and a trans-platinum acetylide (4). Both theoretical and experimental results show that there is sufficient thermodynamic driving force to inject electrons from the dyes to the conduction band of TiO$_2$ and for electron injection from the redox electrolyte to the sensitizers. These results clearly demonstrate that the introduction of acetylene π-bridges into TPA-fluorene sensitizers can obviously extend the conjugated system and enhance the molar extinction coefficient. Unexpectedly, we found that the DSSC performance of these dyes decreases as the π-bridge length is increased, which is probably due to the presence of elongated conjugation pathways, which minimizes the donor–acceptor interaction and produces a higher energy optical excitation.

Based on these results, additional work is currently focused on developing improved absorption properties by changing the acceptor moiety in dye 1. Additionally, we are working on designing and synthesizing dyes that inhibit aggregation and recombination processes by introducing highly hindered groups in the donors.

Acknowledgements

The authors gratefully acknowledge financial support from COLCIENCIAS and Universidad del Valle. Luis Echegoyen wishes to thank the US National Science Foundation, grants DMR-1205302 (PREM Program) and the Airforce Office of Scientific Research (grants FA9550-12-1-0053 and FA9550-12-1-0468) for generous financial support. Luis Echegoyen also wishes to thank the Robert A. Welch Foundation for an endowed chair, grant # AH-0033, for generous support. Nazario Martín thanks to the MINECO of Spain (Project CTQ2011-24652) for financial support.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.solmat.2013.10.035.

References

