Microfluidic devices for biomedical applications
Microfluidic devices for biomedical applications

Edited by
Xiujun (James) Li
and Yu Zhou
Contents

Contributor contact details
Woodhead Publishing Series in Biomaterials
About the editors
Preface

Part I
Fundamentals of microfluidic technologies for biomedical applications

1
Materials and methods for the microfabrication of microfluidic biomedical devices
W. I. Wu, P. Rezaï, H. H. Hsu and P. R. Selvaganapathy, McMaster University, Canada

- 1.1 Introduction
- 1.2 Microfabrication methods
- 1.3 Materials for biomedical devices
- 1.4 Polymers
- 1.5 Conclusion and future trends
- 1.6 References
- 1.7 Appendix: acronyms

2
Surface coatings for microfluidic-based biomedical devices
B. G. Abdallah and A. Ros, Arizona State University, USA

- 2.1 Introduction
- 2.2 Covalent immobilization strategies: polymer devices
- 2.3 Covalent immobilization strategies: glass devices
- 2.4 Adsorption strategies
- 2.5 Other strategies utilizing surface treatments
- 2.6 Examples of applications
Contents

2.7 Conclusion and future trends

2.8 Sources of further information and advice

2.9 References

3 Actuation mechanisms for microfluidic biomedical devices

A. Rezk, J. Friend and L. Yeo, RMIT University, Australia

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
<td>100</td>
</tr>
<tr>
<td>3.2 Electrokinetics</td>
<td>101</td>
</tr>
<tr>
<td>3.3 Acoustics</td>
<td>118</td>
</tr>
<tr>
<td>3.4 Limitations and future trends</td>
<td>128</td>
</tr>
<tr>
<td>3.5 References</td>
<td>130</td>
</tr>
</tbody>
</table>

4 Digital microfluidics technologies for biomedical devices

C. M. Collier, J. Nichols and J. F. Holzman, The University of British Columbia, Canada

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>139</td>
</tr>
<tr>
<td>4.2 On-chip microdrop motion techniques</td>
<td>142</td>
</tr>
<tr>
<td>4.3 Sensing techniques</td>
<td>155</td>
</tr>
<tr>
<td>4.4 Future trends</td>
<td>161</td>
</tr>
<tr>
<td>4.5 Conclusion</td>
<td>161</td>
</tr>
<tr>
<td>4.6 References</td>
<td>162</td>
</tr>
</tbody>
</table>

Part II Applications of microfluidic devices for drug delivery and discovery

5 Controlled drug delivery using microfluidic devices

N. Gao, Harvard University, USA and X.J. Li, University of Texas at El Paso, USA

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>167</td>
</tr>
<tr>
<td>5.2 Microreservoir-based drug delivery systems</td>
<td>169</td>
</tr>
<tr>
<td>5.3 Micro/nanofluidics-based drug delivery systems</td>
<td>175</td>
</tr>
<tr>
<td>5.4 Conclusion</td>
<td>181</td>
</tr>
<tr>
<td>5.5 Future trends</td>
<td>182</td>
</tr>
<tr>
<td>5.6 References</td>
<td>182</td>
</tr>
</tbody>
</table>
6 Microneedles for drug delivery and monitoring 185

6.1 Introduction 185
6.2 Fabrication of microneedles (MNs) 187
6.3 MN design parameters and structure 190
6.4 Strategies for MN-based drug delivery 196
6.5 MN-mediated monitoring using skin interstitial fluid (ISF) and blood samples 202
6.6 Future trends 213
6.7 Conclusion 218
6.8 References 219

7 Microfluidic devices for drug discovery and analysis 231
J. S. Kochhar, S. Y. Chan and P. S. Ong, National University of Singapore, Singapore, W. G. Lee, Kyung Hee University, Republic of Korea and L. Kang, National University of Singapore, Singapore

7.1 Introduction 231
7.2 Microfluidics for drug discovery 233
7.3 Microfluidics for drug analysis and diagnostic applications 257
7.4 Conclusion and future trends 268
7.5 Sources of further information and advice 269
7.6 References 269

Part III Applications of microfluidic devices for cellular analysis and tissue engineering 281

8 Microfluidic devices for cell manipulation 283
H. O. Fatoyinbo, University of Surrey, UK

8.1 Introduction 283
8.2 Microenvironment on cell integrity 285
8.3 Microscale fluid dynamics 287
8.4 Manipulation technologies 293
8.5 Manipulation of cancer cells in microfluidic systems 329
8.6 Conclusion and future trends 334
8.7 Sources of further information and advice 334
8.8 References 335
Contents

9 Microfluidic devices for single-cell trapping and automated micro-robotic injection 351
X. Y. Liu, McGill University, Canada and Y. Sun, University of Toronto, Canada

9.1 Introduction 351
9.2 Device design and microfabrication 353
9.3 Experimental results and discussion 355
9.4 Conclusion 360
9.5 Acknowledgements 361
9.6 References 361

10 Microfluidic devices for developing tissue scaffolds 363

10.1 Introduction 363
10.2 Key issues and technical challenges for successful tissue engineering 364
10.3 Microfluidic device platforms 370
10.4 Conclusion and future trends 379
10.5 References 381

11 Microfluidic devices for stem cell analysis 388
D.-K. Kang, J. Lu, W. Zhang, E. Chang, M. A. Eckert, M. M. Ali and W. Zhao, University of California, Irvine, USA

11.1 Introduction 388
11.2 Technologies used in stem cell analysis 392
11.3 Examples of microfluidic platform for stem cell analysis: stem cell culture platform – mimicking in vivo culture conditions in vitro 402
11.4 Examples of microfluidic platform for stem cell analysis: single stem cell analysis 410
11.5 Microdevices for label-free and non-invasive monitoring of stem cell differentiation 414
11.6 Microfluidics stem cell separation technology 420
11.7 Conclusion and future trends 428
11.8 Sources of further information and advice 431
11.9 References 431
Part IV Applications of microfluidic devices in diagnostic sensing 443

12 Development of immunoassays for protein analysis
on nanobioarray chips 445
J. Lee and P. C. H. Li, Simon Fraser University, Canada

12.1 Introduction 445
12.2 Technologies 447
12.3 Immobilization chemistry 451
12.4 Detection methods 452
12.5 Applications 454
12.6 Conclusion and future trends 462
12.7 References 462

13 Integrated microfluidic systems for genetic analysis 465
B. Zhuang, W. Gan and P. Liu, Tsinghua University, China

13.1 Introduction 465
13.2 Integrated microfluidic systems 467
13.3 Development of integrated microdevices 468
13.4 Applications of fully integrated systems in genetic
analysis 470
13.5 Conclusion and future trends 482
13.6 References 483

14 Low-cost assays in paper-based microfluidic
biomedical devices 492
M. Benhabib, San Francisco, USA and X.J. Li, University
of Texas at El Paso, USA

14.1 Introduction 492
14.2 Fabrication techniques for paper-based microfluidic
devices 493
14.3 Detection and read-out technologies 506
14.4 Application of paper-based microfluidic devices 513
14.5 Conclusion and future trends 521
14.6 References 522
15 Microfluidic devices for viral detection 527
 J. Sun and X. Jiang, National Center for Nanoscience Technology, China
15.1 Introduction 527
15.2 Microfluidic technologies used for viral detection 529
15.3 Examples of applications 544
15.4 Conclusion and future trends 550
15.5 Acknowledgements 551
15.6 References 551

16 Microfluidics for monitoring and imaging pancreatic islet and β-cells for human transplant 557
16.1 Introduction 557
16.2 Insulin secretory pathway: how glucose sensing and metabolic coupling translates to insulin kinetics 560
16.3 Technologies: the emergence of microfluidics applied to islet and β-cell study 562
16.4 Design and fabrication of the University of Illinois at Chicago (UIC) microfluidic device 565
16.5 Protocol: materials 569
16.6 Protocol: procedures 573
16.7 Anticipated results 585
16.8 Acknowledgements 589
16.9 References 589

17 Microfluidic devices for radio chemical synthesis 594
 A. Y. Lebedev, University of California, Los Angeles, USA
17.1 Introduction 594
17.2 Medical applications of microfluidic radiochemistry: positron emission tomography (PET) and single photon emission computed tomography (SPECT) 595
17.3 Advantages and disadvantages of microfluidic devices 597
17.4 Realization of promises: the superiority of microfluidic systems 601
17.5 Current problems for microfluidic technology 621
17.6 Recent developments with potential impact 626
17.7 Conclusion 629
17.8 References 629

Index 634
Contributor contact details

(\ *= main contact)

Editors
XiuJun (James) Li
University of Texas at El Paso
USA
E-mail: Xli4@utep.edu
Yu Zhou
ABS Global
USA
E-mail: zhouyu9917@gmail.com

Chapter 1
Wen-I Wu, Pouya Rezai, Huan-Hsuan Hsu, P. Ravi Selvaganapathy*
JHE 316, Department of Mechanical Engineering
McMaster University
1280 Main St W
Hamilton, Ontario
Canada L8S 4L7
E-mail: selvaga@mcmaster.ca

Chapter 2
Bahige G. Abdallah and Alexandra Ros*

Chapter 3
Amgad Rezk, James Friend and Leslie Yeo*
RMIT University
Melbourne VIC 3000
Australia
E-mail: leslie.yeo@rmit.edu.au

Chapter 4
Christopher M. Collier, Jacqueline Nichols and Jonathan F. Holzman*
The University of British Columbia
3333 University Way
Kelowna, BC
Canada V1V1V7
E-mail: jonathan.holzman@ubc.ca
Chapter 5
Ning Gao*
Department of Chemistry and Chemical Biology
Harvard University M-003
12 Oxford Street
Cambridge, MA 02138
USA
E-mail: ngao@cmliris.harvard.edu

XiuJun (James) Li
Department of Chemistry
University of Texas at El Paso
El Paso, TX 79968
USA
E-mail: Xli4@utep.edu

Chapter 6
Thakur Raghu Raj Singh, Hannah McMillan, Karen Mooney, Ahlam Zaid Alkilani and Ryan F Donnelly*
School of Pharmacy
Queens University Belfast
Medical Biology Centre
97 Lisburn Road
Belfast BT9 7BL
Northern Ireland
UK
E-mail: r.donnelly@qub.ac.uk

Chapter 7
Jaspreet Singh Kochhar, Sui Yung Chan, Pei Shi Ong and Lifeng Kang*
Department of Pharmacy
National University of Singapore
18 Science Drive 4
Singapore 117543
E-mail: lkang@nus.edu.sg

Chapter 8
Won Gu Lee
Department of Mechanical Engineering
College of Engineering
Kyung Hee University
1 Seochon, Giheung, Yongin, Gyeonggi 446–701
Republic of Korea

Chapter 9
Henry Fatoyinbo
University of Surrey
Faculty of Engineering and Physical Sciences
Centre for Biomedical Engineering
 Guildford, Surrey GU2 7XH, UK
E-mail: h.fatoyinbo@surrey.ac.uk

Xinyu Liu*
Department of Mechanical Engineering
McGill University
Montreal, Quebec
Canada H3A 0C3
E-mail: xinyu.liu@mcgill.ca

Yu Sun
Department of Mechanical and Industrial Engineering
University of Toronto
Toronto, Ont.
Canada M5S3G8
E-mail: sun@mie.utoronto.ca
Chapter 10
Lien T. Chau, Jessica E. Frith, Richard J. Mills, Donna J. Menzies, Drew M. Titmarsh, Justin J. Cooper-White* Australian Institute for Bioengineering & Nanotechnology The University of Queensland St. Lucia QLD 4072 Australia E-mail: j.cooperwhite@uq.edu.au

Chapter 11
Dong-Ku Kang, Jente Lu, Wenwen Zhang, Elizabeth Chang, Mark A. Eckert, Md Monsur Ali and Weian Zhao* Department of Pharmaceutical Sciences Department of Biomedical Engineering Sue and Bill Gross Stem Cell Research Center Chao Family Comprehensive Cancer Center Department of Biomedical Engineering University of California Irvine, CA 92697 USA E-mail: weianz@uci.edu weianzhao.uci@gmail.com

Chapter 12
Jonathan Lee and Paul C. H. Li* Department of Chemistry Simon Fraser University 8888 University Drive Burnaby, BC Canada V5A 1S6 E-mail: paulli@sfu.ca

Chapter 13
Bin Zhuang, Wupeng Gan and Peng Liu* Department of Biomedical Engineering Tsinghua University School of Medicine Haidian District Beijing 100084 China E-mail: pliu@tsinghua.edu.cn

Chapter 14
Merwan Benhabib* 785 Golden Gate Ave Apt#201 San Francisco, CA 94102 USA E-mail: merwanbenhabib@gmail.com XiuJun (James) Li Department of Chemistry University of Texas at El Paso El Paso, TX 79968 USA E-mail: Xli4@utep.edu
Chapter 15
Jiashu Sun and Xingyu Jiang*
National Center for Nanoscience
and Technology
No. 11 Beiyitiao, Zhongguancun,
Beijing 100190
China
Email: xingyujiang@nanoctr.cn

Chapter 16
Yong Wang* and Joshua E.
Mendoza-Elias
Department of Surgery/Transplant
University of Illinois at Chicago
College of Medicine
840 South Wood Street
Clinical Sciences Building (MC
958), Suite 502
Chicago, IL 60612
USA
E-mail: wangy@uic.edu and
jmendo27@uic.edu

Chapter 17
Artem Y. Lebedev
University of California
Los Angeles
UCLA Ahmanson Biomedical
Cyclotron
780 Westwood Plaza
mailroom CHS B2–096
Los Angeles, CA 90095
USA
E-mail: lebedevfedora@gmail.com
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Editor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Biomaterials for treating skin loss</td>
<td>Edited by D. P. Orgill and C. Blanco</td>
</tr>
<tr>
<td>18</td>
<td>Biomaterials and tissue engineering in urology</td>
<td>Edited by J. Denstedt and A. Atala</td>
</tr>
<tr>
<td>19</td>
<td>Materials science for dentistry</td>
<td>B. W. Darvell</td>
</tr>
<tr>
<td>20</td>
<td>Bone repair biomaterials</td>
<td>Edited by J. A. Planell, S. M. Best, D. Lacroix and A. Merolli</td>
</tr>
<tr>
<td>21</td>
<td>Biomedical composites</td>
<td>Edited by L. Ambrosio</td>
</tr>
<tr>
<td>22</td>
<td>Drug–device combination products</td>
<td>Edited by A. Lewis</td>
</tr>
<tr>
<td>23</td>
<td>Biomaterials and regenerative medicine in ophthalmology</td>
<td>Edited by T. V. Chirila</td>
</tr>
<tr>
<td>24</td>
<td>Regenerative medicine and biomaterials for the repair of connective</td>
<td>Edited by C. Archer and J. Ralphs</td>
</tr>
<tr>
<td></td>
<td>tissues</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Metals for biomedical devices</td>
<td>Edited by M. Ninomi</td>
</tr>
<tr>
<td>26</td>
<td>Biointegration of medical implant materials: science and design</td>
<td>Edited by C. P. Sharma</td>
</tr>
<tr>
<td>27</td>
<td>Biomaterials and devices for the circulatory system</td>
<td>Edited by T. Gourlay and R. Black</td>
</tr>
<tr>
<td>28</td>
<td>Surface modification of biomaterials: methods analysis and applications</td>
<td>Edited by R. Williams</td>
</tr>
<tr>
<td>29</td>
<td>Biomaterials for artificial organs</td>
<td>Edited by M. Lysaght and T. Webster</td>
</tr>
<tr>
<td>30</td>
<td>Injectable biomaterials: Science and applications</td>
<td>Edited by B. Vernon</td>
</tr>
<tr>
<td>31</td>
<td>Biomedical hydrogels: Biochemistry, manufacture and medical</td>
<td>Edited by S. Rimmer</td>
</tr>
<tr>
<td></td>
<td>applications</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Preprosthetic and maxillofacial surgery: Biomaterials, bone grafting</td>
<td>Edited by J. Ferri and E. Hunziker</td>
</tr>
<tr>
<td></td>
<td>and tissue engineering</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Bioactive materials in medicine: Design and applications</td>
<td>Edited by X. Zhao, J. M. Courtney and H. Qian</td>
</tr>
<tr>
<td>34</td>
<td>Advanced wound repair therapies</td>
<td>Edited by D. Farrar</td>
</tr>
<tr>
<td>35</td>
<td>Electrospinning for tissue regeneration</td>
<td>Edited by L. Bosworth and S. Downes</td>
</tr>
<tr>
<td>36</td>
<td>Bioactive glasses: Materials, properties and applications</td>
<td>Edited by H. O. Ylänen</td>
</tr>
</tbody>
</table>
37 Coatings for biomedical applications
 Edited by M. Driver
38 Progenitor and stem cell technologies and therapies
 Edited by A. Atala
39 Biomaterials for spinal surgery
 Edited by L. Ambrosio and E. Tanner
40 Minimized cardiopulmonary bypass techniques and technologies
 Edited by T. Gourlay and S. Gunaydin
41 Wear of orthopaedic implants and artificial joints
 Edited by S. Affatato
42 Biomaterials in plastic surgery: Breast implants
 Edited by W. Peters, H. Brandon, K. L. Jerina, C. Wolf and V. L. Young
43 MEMS for biomedical applications
 Edited by S. Bhansali and A. Vasudev
44 Durability and reliability of medical polymers
 Edited by M. Jenkins and A. Stamboulis
45 Biosensors for medical applications
 Edited by S. Higson
46 Sterilisation of biomaterials and medical devices
 Edited by S. Lerouge and A. Simmons
47 The hip resurfacing handbook: A practical guide to the use and management of modern hip resurfacings
 Edited by K. De Smet, P. Campbell and C. Van Der Straeten
48 Developments in tissue engineered and regenerative medicine products
 J. Basu and J. W. Ludlow
49 Nanomedicine: technologies and applications
 Edited by T. J. Webster
50 Biocompatibility and performance of medical devices
 Edited by J-P. Boutrand
51 Medical robotics: minimally invasive surgery
 Edited by P. Gomes
52 Implantable sensor systems for medical applications
 Edited by A. Inmann and D. Hodgins
53 Non-metallic biomaterials for tooth repair and replacement
 Edited by P. Vallittu
54 Joining and assembly of medical materials and devices
 Edited by Y. (Norman) Zhou and M. D. Breyen
55 Diamond-based materials for biomedical applications
 Edited by R. Narayan
56 Nanomaterials in tissue engineering: Fabrication and applications
 Edited by A. K. Gaharwar, S. Sant, M. J. Hancock and S. A. Hacking
57 Biomimetic biomaterials: Structure and applications
 Edited by A. Ruys
58 Standardisation in cell and tissue engineering: Methods and protocols
 Edited by V. Salih
59 Inhaler devices: Fundamentals, design and drug delivery
 Edited by P. Prokopovich
60 Bio-tribocorrosion in biomaterials and medical implants
 Edited by Yu Yan
61 Microfluidic devices for biomedical applications
 Edited by X-J. James Li and Y. Zhou
62 Decontamination in hospitals and healthcare
 Edited by J. T. Walker
63 Biomedical imaging: Applications and advances
 Edited by P. Morris
64 Characterization of biomaterials
 Edited by M. Jaffe, W. Hammond, P. Tolias and T. Arinzeh
65 Biomaterials and medical tribology
 Edited by J. Paolo Davim
XiuJun (James) Li, PhD, is a tenure-track assistant Professor in the Department of Chemistry, Border Biomedical Research Center, and Materials Science & Engineering at University of Texas at El Paso (UTEP). After he obtained his PhD degree in microfluidic single-cell analysis with Prof. Paul Li from Simon Fraser University (SFU) in Canada in 2008, he pursued his postdoctoral research in integrated microfluidic devices for genetic analysis with Professor Richard Mathies at UC Berkeley, and low-cost diagnosis with Professor George Whitesides at Harvard University, while holding an Postdoctoral Fellowship from Natural Sciences and Engineering Research Council (NSERC) of Canada. He has gained extensive experiences in bioanalysis using microfluidic systems, such as single-cell analysis, genetic analysis, low-cost diagnosis, pathogen detection, 3D cell culture, and so on. Dr Li’s research interest is centered on the development of innovative microfluidic technologies and nanotechnologies for bioanalysis and bioengineering. He has authored about 30 publications, including 2 book chapters. His research has been funded by National Institute of Health (NIH), UT System, UTEP, State Key Laboratory of Bioreactor Engineering of China and other agencies. He is the recipient of Dean of Graduate Studies Convocation Medal (SFU) in 2009 and UT STARS award in 2012.

Yu Zhou, PhD, is a Research Scientist in the Department of Research and Development at ABS Global Inc., USA. Dr Zhou received his PhD degree in mechanical engineering from University of Illinois at Chicago in 2010. After graduation, he joined ABS Global, the world-leading genetics provider company as a key researcher and has been working on the development of a high-throughput microfluidic flow cytometry for biological cell detection and manipulation. He obtained extensive experience in design and fabrication of silicon-based microsystems and disposal plastic microfluidic chips, precision fluid delivery, and microfluidics-based single cell separation and analysis. He is a member of ASME and serves on the advisory editorial board for several technical journals including Microsystem Technologies and Journal of Mechanical Engineering Research (Canada) since 2011.

Note: The order of editors’ names does not denote their importance in producing this book.
Preface

Biomedical applications ranging from drug discovery and delivery and disease diagnosis to point of care (POC) devices and tissue engineering have attracted increasing attention since the last few decades. Biomedical engineering, closely related to biomedical applications, has only recently emerged as its own discipline. Conventional biomedical techniques however often face increasing challenges in different biomedical applications, such as high cost, slow diagnosis, expensive instrumentation, low drug delivery efficiency, and high failure rates in drug discovery due to the discrepancy between 2D cell-based assays and living tissues. Additionally, many cases of global diseases (e.g. malaria, tuberculosis, or TB, meningitis and hepatitis B) happen in high-poverty areas, such as rural areas and developing nations which often cannot afford expensive and high-precision instruments. For instance, according to World Health Organization (WHO) data in 2012, 'one million cases of bacterial meningitis are estimated to occur and 200 000 of these die annually'. All these pose great challenges to conventional biomedical techniques.

Microfluidic or lab-on-a-chip (LOC) devices emerged in the 1990s and have grown explosively in the last two decades due to their inherent advantages associated with miniaturization, integration, parallelization, as well as portability and automation, including low consumption of reagents and samples, rapid analysis, cost-effectiveness, high efficiency and less human interference during operation. Microfluidics offers great potential in addressing those challenges in biomedical applications. Countless microfluidic systems have been developed for high-throughput genetic analysis, single-cell analysis, proteomics, low-cost diagnosis, pathogen detection, controlled-drug release, and tissue engineering. After a concise introduction of the fundamentals of microfluidic technologies, this book highlights current cutting-edge research of microfluidic devices or LOC platforms in biomedical applications.

Part I mainly aims to introduce the fundamentals of microfluidic technologies. Suitability of device construction materials and methods is highly critical to the success of different biomedical applications. Chapter 1 is dedicated to introduce a variety of widely used materials in microfluidic devices and their corresponding fabrication methods. Because stable and well-characterized surfaces are essential to achieve desired performance in some
biomedical applications, Chapter 2 provides an overview of strategies used to accomplish surface coating. Covalent and adsorptive coating strategies are included. Actuators are responsible for sophisticated manipulation of fluids and particles in microfluidic systems and have been proved to be of significant importance in the successful implement of microfluidic operations. Chapter 3 summarizes major actuation principles used in medical devices, and concentrates on two mechanisms, namely, electrokinesis and acoustics. Digital microfluidics has recently emerged as a popular approach to transport individual droplets on an array of patterned electrodes. Therefore, Chapter 4 discusses the most recent development of this technology with particular attention to actuation and sensing scalability.

Part II focuses on applications of microfluidic devices for drug delivery and discovery. The applications of microfluidics technology in drug delivery and discovery have experienced a sustainable growth in the past two decades. Microfluidic devices have become an increasingly important tool to improve the efficiency of drug delivery and reduce side effects of treatment. Chapter 5 provides an overview of controlled drug delivery with various microfluidic devices and triggering mechanisms. In particular, Chapter 6 is dedicated to the study of the transdermal delivery of drug molecules and monitoring biological fluids using microfabricated needles and provides an overview of recent progress on the microneedle technology. The last chapter in Part II, Chapter 7, presents the roles of microfluidic chips in current drug discovery and in high-throughput screening, identification of drug targets and preclinical testing. Potential applications of microfluidic devices in chemical analysis as well as analysis of metabolites in blood for studying pathology are also discussed herein.

The cell is the basic organization unit of living organisms, capable of many basic life processes. Part III is dedicated to applications of microfluidic devices related to cellular analysis and tissue engineering. The behaviors of particles or cells in microfluidic channels have been found important to understand the motion of particles or cells of interest. Chapter 8 describes the fundamentals of microscale fluid dynamics and key issues relating to biological cell behaviors within microfluidic chips. Different mechanisms available to manipulate cells and recent development in these areas are presented in detail. Chapter 9 describes an application of a glass-based microfluidic device in trapping and automated injection of single mouse embryos for large scale biomolecule testing. Many efforts have also been dedicated to the study of cells and the surrounding culture microenvironments, which is the key to understand the complex cell biology and tissue genesis. Chapter 10 is more relative to current advances of microfluidic platforms for tissue engineering and regenerative medicine applications. Stem cells, special types of biological cells that can divide and differentiate into diverse specialized cell types, are the basic building blocks of the human body, and
the research on stem cells is one of the most fascinating areas. Chapter 11 focuses on the applications of microfluidics technology for molecular and cellular analysis of stem cells.

Part IV focuses on applications of microfluidic devices in diagnostic sensing. Miniaturization helps investigators get rid of the restrictions of low concentration, low volume of samples in protein detection and clinical diagnostics. The focus of Chapter 12 is on the development of immunoassays for antibodies and cytokines analysis on nano-bioarray chips. The impact of fully integrated microfluidic systems on high performance genetic analysis is described in Chapter 13. Recent development in DNA sequencing, gene expression analysis, infectious disease detection and forensic short tandem repeat (STR) typing with integrated microfluidic platforms has been reviewed. Many conventional diagnostic methods require bulky and expensive instruments, limiting their applications in resource-poor settings, especially in developing nations. Paper-based analytical devices have been developed for low cost and easy-to-use diagnostic applications. The ability to fabricate microfluidic channels in paper to perform parallel analysis of various biochemical analysts has been demonstrated. Chapter 14 summarizes recent advances in paper-based microfluidic devices. In addition, rapid and multiplexed detection of viral infection is highly desired in many diagnostic applications. Thus, attention has been given to microfluidic POC devices for sensitive viral detection with high specificity based on immunoassays and nucleic acid-based testing in Chapter 15. Furthermore, microfluidic devices have been applied in the field of pancreatic islet transplantation as a clinical therapy for diabetes and radiochemical synthesis for medical imaging in clinical practices, as discussed in Chapters 16 and 17, respectively. In Chapter 16, microfluidic devices are used for the study of pancreatic islet and β-cell physiology and disease pathophysiology. Chapter 17 focuses on the topic of microfluidic devices for radiochemical synthesis in production of radioactively labeled tracers for Positron Emission Tomography and Single Photon Emission Computed Tomography, which are commonly used to quantify biochemical processes in live organisms.

Xiujun James Li and Yu Zhou
August, 2013